小学三年级趣味数学

网上有关“小学三年级趣味数学”话题很是火热,小编也是针对小学三年级趣味数学寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

解:如图所示,空白部分为原正方形。带色部分就是增加的部分。

其中,红色部分,显然是边长为2的正方形,它的面积等于4

因此,两个蓝色部分的面积等于:20

-

4

=

16

cm?

则:每一个蓝色长方形的长就等于:(16/2)÷

2

=

4cm

所以,原正方形的边长等于4

cm

三年级数学趣味手抄报

趣味数学题(一)

1.过桥

今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:a 2 分;b 3 分;c 8 分;d 10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥?

2.巧插数字

125 × 4 × 3 = 2000

这个式子显然不等,可是如果算式中巧妙地插入两个数字“7”,这个等式便可以成立,你知道这两个7应该插在哪吗?

3.温馨四季

春夏 × 秋冬 = 春夏秋冬

春冬 × 秋夏 = 春夏秋冬

式中 春、夏、秋、冬 各代表四个不同的数字,你能指出它们各代表什么数字吗?

4.破车下山

一个破车要走两英哩的路,上山及下山各一英哩,上山时平均速度每小时15英哩问当它下山走第二个英哩的路时要多快才能达到平均速度为每小时30英哩?是45英哩吗?你可要考虑清楚了呦!

5.共卖多少鸡蛋

王老太上集市上去卖鸡蛋,第一个人买走蓝子里鸡蛋的一半又一个,第二个人买走剩下鸡蛋的一半又一个,这时蓝子里还剩一个鸡蛋,请问王老太共卖出多少个鸡蛋?

6.有多少人参加考试

试卷上有6道选择题,每题有3个选项,结果阅卷老师发现,在所有卷子中任选3张答卷,都有一道题的选择互不相同,请问最多有多少人参加了这次考试?

趣味数学题(二)

一、丢番图的墓志铭

古希腊数学家丢番图的墓志铭里包含一个有趣的一元一次方程问题:

过路人!这儿埋葬着丢番图,他生命的六分之一是童年;再过了一生的十二分之一后,他开始长胡须;又过了一生的七分之一后他结了婚;婚后五年他有了儿子,但可惜儿子的寿命只有父亲的一半;儿子死后,老人再活了四年就结束了余生。

根据这个墓志铭,请计算出丢番图的寿命。

二、怎样合算

小臭班里的45个同学在石老师的带领下到一个风景点春游。他们准备买票时,看见一块牌子上写着:“请游客购票:每张票票价2元;50人或50人以上可以购买团体票,票价按八折优惠。”很多同学提出:“我们应该怎样买票比较合算?”石老师说:“这个问题问得好,看谁能计算出来。”

三、分苹果

秋天到了,小猴征征种的苹果都成熟了,他挑了最好的苹果装在6个箱子中,准备送给好朋友童童和欣欣,6个箱子中分别装有11、12、14、16、17、20个苹果。因为童童小,吃东西少一些,所以他准备只把1/3的苹果分给童童,其余的分给欣欣,箱子不能拆分,你知道征征是怎么分的吗?

四、谁将取胜

第三届动物运动会上,老虎和狮子在1200米的长跑比赛中成绩相同。为最后决出胜负,裁判老猴让老虎和狮子举行附加赛。这两头猛兽最后赛的是百米来回跑,共计200米远。老虎每跨一步为2米,狮子一步为3米,但老虎每跨三步,狮子却只能跨两步。

据以上的“情报”,你能提前判断出谁将取胜吗?

五、学生的编号

某学校为每个学生编号,设定末尾用1表示男生,用2表示女生;199713321表示“1997年入学的一年级三班的32号同学,该同学是男生”,那么,199532012表示的学生是哪一年入学的,几年级几班的,学号是多少,是男生还是女生?

答案

趣味数学题(一)

第1题答案: 先是a和b一起过桥,然后将b留在对岸,a独自返回。a返回后将手电筒交给c和d,让c和d一起过桥,c和d到达对岸后,将手电筒交给b,让b将手电筒带回,最后a和b再次一起过桥。则所需时间为:3+2+10+3+3=21分钟。

第2题答案:插入数字后的式子为:1725×4×3=20700

第3题答案:春=2;夏=1;秋=8;冬=7

第4题答案: 无论如何破车的平均速度也不可能达到30英里/小时。因为当平均速度为30英里/小时时,破车上、下山的总时间应为1/15小时。而破车上山就用了1/15小时。所以说破车的平均速度是达不到30英里/小时的。

第5题答案:王老太共卖了10个鸡蛋。

第6题答案:最多有13人参加考试,不过具体的思考过程我也不太清楚,请高手指教!

趣味数学题(二)

一、 设丢番图寿命为x岁,由题意得

x/6+x/12+x/7+5+x/2+4=x

化简这个方程,得75x/84+9=x。

解之,得x=84。

就是说,丢番图的寿命是84岁。

二、 买46张个人票应付钱:2×46=92(元)。

买50张团体票应付钱:2×50×80%=80(元)。

买团体票比买个人票少付:92-80=12(元)。

即买团体票比买个人票少付12元,所以,应该买团体票。

三、 6个箱子中共有苹果11+12+14+16+17+20=90(个),所以童童应分苹果90×1/3=30(个)。因为14+16=30(个),所以应该把装有14、16个苹果的两箱苹果分给童童,其余的分给欣欣。

四、 老虎跨三步,跑2×3=6(米);狮子跨两步,跑3×2=6(米)。所以老虎和狮子跑的速度是一样的。但老虎正好以五十步跑完100米,而狮子则在跑到99米之处后还须再跨一步,到达102米处,然后往回跑。这样,狮子比老虎要多跑4米,故老虎取胜。

五、199532012表示的学生是1995年入学的三年级二班的,学号是1号,该生是女生。

矫正闹钟

答案:我总共用去的时间为4小时50分(7∶00—11∶50),除去游玩的时间一个半小时,走路的时间应为3小时20分钟。因为来去时的步行时间相等,都为1小时40分钟,并且离开博物馆开始往家走的准确时间应为8∶50+1∶30 = 10∶20,所以回到家里的时间应为10∶20+1∶40 = 12。这时,应将闹钟拨到12时才是准确的。

为什么少了1元?

解答:苹果每千克1元,梨每千克 元,混合后每千克(1+ )÷2= 元,而小明2.5千克只收2元,即每千克只收 元。这样,每千克少收 - = 元。苹果和梨一共30千克,就少收了1元。

三年级趣味数学故事

趣味数学知识

1、 两个男孩各骑一辆自行车,从相距2o英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1o英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案

每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2o英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。

许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼(john von neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。

冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道。

有趣的数学科普小知识如下:

一、阿拉伯数字

阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

二、九九歌

九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。

大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。

三、莫比乌斯环

莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。

莫比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断开,这也是莫比乌斯环的神奇之处。

鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 假设法: 解: 假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4—2=2(条) 24÷2=12 (只) ------ 兔 35-12=23(只) ------鸡 方程: 解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23 答:兔有12只,鸡有23只。 我国古代《孙子算经》共三卷,成书大约在公元5世纪。这本书浅显易懂,有许多有趣的算术题,比如“鸡兔同笼”问题: 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 题目中给出了鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。鸡兔总的脚数是35×2=70(只),比题中所说的94只要少94-70=24(只)。 现在,松开一只兔子脚上的绳子,总的脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上的绳子,总的脚数又增加2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只)。 我们来总结一下这道题的解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。 我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只。

[编辑本段]例题

1.班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生? 解:设男生有X人 女生有(50-X)人。 3x=120-5-2(50-x) 3x=115-2*50+2x 3x=115-100+2x 3x=15+2x x=15 50-15=35(人) 答:男生有15人,女生有35人。 2.大油瓶一瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大小油瓶各多少个? 1/2=0.5(千克)4×60=240(千克)240-100=140(千克)140/(4-0.5)=40(个)60-40=20(个) 答:大瓶20个,小瓶40个。 3.小毛参加数学竞赛,共做20道题,得67分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。问小毛做对几道题? 这道题可以设小毛做对X道,那么做错(20-X)÷2,没做(20-X)÷2,然后用做对的乘5减去做错的乘1,等于67。 方程: 5X-(20-X)÷2×1=67 X=14 小毛做对14道 4.有蜘蛛,蜻蜓,蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只? 解:方程假设蜘蛛为x,蜻蜓为y,蝉为Z 那么 x+y+z=18 8x+6y+6z=118 2y+z=20 由此算出 x=5 y=7 z=6 所以 蜘蛛是5只 蜻蜓是7只 蝉是6只

[编辑本段]详细解法

一,基本问题 "鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路. 例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只 ? 解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34(只), 有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只。 上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只). 每只鸡比兔子少(4-2)只脚,所以共有鸡 (88×4-244)÷(4-2)= 54(只). 说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数). 当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了 244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 68÷2=34(只). 说明设想中的"鸡",有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面的公式.

关于“小学三年级趣味数学”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(4)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 野渡舟横的头像
    野渡舟横 2026年01月16日

    我是西楚号的签约作者“野渡舟横”

  • 野渡舟横
    野渡舟横 2026年01月16日

    本文概览:网上有关“小学三年级趣味数学”话题很是火热,小编也是针对小学三年级趣味数学寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。解:如图所示,...

  • 野渡舟横
    用户011609 2026年01月16日

    文章不错《小学三年级趣味数学》内容很有帮助

联系我们:

邮件:西楚号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信